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Abstract

We introduce the Discovery Engine, a general purpose automated system for
scientific discovery. It combines deep learning with state-of-the-art interpretability
techniques to identify complex, non-linear relationships in arbitrary datasets. This
technology enables a shift from hypothesis-driven to data-driven discovery, and
massively accelerates scientific enquiry by allowing a full exploration of the space
of possible insights, free of bias and assumptions. It is hundreds of times faster
than manual analysis, domain-agnostic, and data efficient — requiring only hundreds
(rather than hundreds of thousands) of samples, and thereby making Al for science
accessible in domains where data is limited or costly to obtain. In this paper we
describe the Discovery Engine system and contrast it with contemporary approaches
to Al for general scientific discovery (particularly LLM-driven methods, which
form the bulk of alternative solutions).

1 Introduction

The scientific method has served as the foundation of empirical enquiry for over four
centuries. However, increasing evidence suggests that this traditional paradigm faces
unprecedented challenges. Despite exponential growth in research funding and per-
sonnel, the rate of transformative discoveries has decreased [3, 29, 7]. Concurrently,
the replication crisis has revealed that a significant proportion of published findings
are likely false [14, 27, 1]. Aside from underlining the ongoing problem of perverse
incentives in academic publishing, these systemic issues suggest a need for fundamental
methodological change.

This paper endorses a paradigm shift from hypothesis-driven to data-driven discovery,
enabled by recent advances in artificial intelligence. We present our Discovery En-
gine, an automated system that leverages Leap Laboratories’ interpretability research to
automatically identify patterns in complex datasets without requiring predetermined hy-
potheses. This approach addresses key limitations of traditional (slow, biased) scientific
methodology.
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2 Limitations of the Current Scientific Paradigm

The traditional scientific method relies on researchers to formulate testable hypotheses
based on existing knowledge and intuition. This approach is inherently limited by
human cognitive capacity and subject to various biases. Researchers can explore only a
tiny fraction of the potential hypothesis space, and this exploration is necessarily path-
dependent, influenced by personal experience, training, and familiarity with existing
literature [40, 31].

Furthermore, the reliability of hypothesis generation is compromised by the high rate
of non-replicable findings in the scientific literature. When researchers base new
hypotheses on flawed prior work, errors propagate through the scientific knowledge base.
Large Language Models (LLMs) trained on scientific literature inherit and potentially
amplify these issues, as they lack mechanisms for distinguishing valid from invalid
findings [18, 36].

In general, traditional experimental design focuses on testing specific hypotheses, which
constrains both the variables measured and the analytical approaches employed. This
targeted approach, while efficient for testing predetermined ideas, severely limits the
potential for serendipitous discovery. Confirmation bias further exacerbates this issue, as
researchers may consciously or unconsciously design experiments and interpret results
in ways that support their hypotheses [38, 28].

Finally, the ‘publish or perish’ paradigm in academia creates perverse incentives that
prioritize quantity over quality, leading to p-hacking, selective reporting, and publication
bias [26, 10, 8]. While addressing these institutional issues falls outside the scope of this
work, their impact on scientific progress must be acknowledged as it directly contributes
to the unreliability of scientific literature, which impacts many approaches to Al in the
sciences.

3 Large Language Models for Scientific Discovery

As much of Al-for-science research outside of our own lab seems to focus on the
application of LLMs (and agents built atop them), we include here a brief discussion of
how we view these impressive models and their limitations when it comes to accelerating
scientific discovery — and ultimately why we find them ill-suited for the job.

Direct, domain-specific applications of machine learning to specific scientific tasks (e.g.
protein folding [15]) have proven extremely useful, but solve a different problem — one of
automation to increase scientific capability, rather than the general problem of obtaining
novel insight. For that reason they are not discussed in this paper, as we are primarily
concerned with general purpose technologies for automating scientific discovery, rather
than specific solutions in any one domain. Additionally, these kinds of foundation
models are typically extremely data-hungry [44], and require rare expertise and financial
resources to train, rendering this approach to scientific progress inaccessible to most
scientists.



3.1 Current Capabilities and Applications

Large Language Models represent a transformative technology built on transformer
architectures and trained to predict subsequent tokens across vast text corpora. Through
reinforcement learning techniques, these models have been adapted to perform diverse
tasks with remarkable proficiency. In the context of scientific research, LLMs demon-
strate particular strength in tasks that fall within their training distribution. These include:
generation of boilerplate code and analytical scripts; data visualization and plotting;
organization and structuring of research notes; LaTeX formatting and document prepa-
ration; text editing and refinement; initial drafting of manuscripts; and explanation of
well-established scientific concepts. Such capabilities have made LLMs invaluable
tools for automating routine aspects of scientific work, potentially enhancing researcher
productivity [19, 25].

However, despite many impressive capabilities, LLMs face critical limitations when
applied to scientific discovery. They excel at producing text that appears credible and
well-reasoned, regardless of factual accuracy. This capability, while useful for creative
tasks, is risky in scientific contexts.

3.2 Fundamental Limitations of LLMs for Frontier Research

While careful prompt engineering can reduce hallucination rates, researchers must
continuously verify LLM-generated content, including citations and factual claims,
creating a demanding cognitive burden that undermines efficiency gains. At the frontier
of research, where ground truth may be unknown or contested, distinguishing between
accurate insights and convincing hallucinations becomes exceptionally challenging or
impossible. We see this occur often in automated hypothesis generation systems, which
produce numerous candidates — some of which prove useful, but many of which are
ultimately misguided [5, 39, 12, 35].

Hallucination aside, LLMs inherit the biases and errors present in their training data [43].
Given the replication crisis affecting numerous scientific fields, models trained on pub-
lished literature inevitably encode false findings and flawed methodologies. This creates
a compound problem: even when LLMs accurately reproduce information from their
training data, that information may itself be incorrect. This creates a dangerous feedback
loop where each iteration potentially degrades rather than improves scientific qual-
ity. The prospect of academic repositories flooded with convincing but fundamentally
flawed papers poses significant risks to scientific integrity. Review models trained on
contradictory peer reviews introduce additional noise rather than clarity.

Finally, much is lost in translation: academic papers in empirical fields are themselves
an extremely lossy abstraction over the underlying data, in which we hope to find
meaningful insight.

The key insight here is that models trained on human-generated scientific text inevitably
inherit the limitations, biases, and errors present in that text. Without mechanisms
to transcend these inherited flaws, such systems risk accelerating the production of
inherently flawed science rather than advancing genuine discovery. LLMs employed in



this way may well prove successful at automating the existing scientific status quo: a
paradigm that has given us much, but so much less than it could. Scientific discovery is
slowing and the reproducibility crisis is compounding. To fully realise the potential of
artificial intelligence for scientific discovery, we need a new paradigm — one that we
believe the Discovery Engine enables.

3.3 Strategic Use of LLMs in the Discovery Engine

Despite these concerns, we believe that language models do have their place in scientific
discovery. We use LLMs exclusively to contextualize empirically-derived findings with
respect to existing literature, an approach that takes advantage of their spectacular ability
to synthesise textual information, while avoiding reliance on them for primary discovery,
where they are least reliable. Because all of our primary discoveries emerge from direct
analysis of empirical data rather than textual descriptions, findings are grounded in
actual observation rather than linguistic patterns. We recognise that, for all its flaws,
existing scientific literature does encode one thing faithfully: what humans already
know, and what we care about knowing.

4 Data-Driven Discovery

Instead of automating the existing paradigm, we endorse a fundamental reorientation of
the scientific process: rather than beginning with hypotheses, researchers should collect
comprehensive data about phenomena of interest, and systematically analyse this data
to reveal patterns.

Extracting novel insights from data is not a new idea — prior to the advent of big
data, Knowledge Discovery in Databases (KDD), defined as ‘the non-trivial extraction
of implicit, previously unknown, and potentially useful information from data’, was
first discussed by Frawley et al [11] in 1991. KDD typically employs a number of
statistical methods along with some more inherently interpretable machine learning
techniques, such as decision trees, dimensionality reduction, and clustering. These
methods have been effectively used for discovery, such as identifying unsuspected
adverse drug reactions [2]. However, these methods often assume feature independence,
cannot capture complex non-linear patterns, require manual feature engineering, and do
not handle multimodal data well, limiting their potential for truly novel discovery on
today’s rich, complex datasets.

In contrast, deep neural networks excel at identifying complex, non-linear patterns in
high-dimensional data. These models can capture relationships that would be impossible
for humans to detect through traditional statistical analysis [33, 4]. However, the
‘black box’ nature of deep learning has historically limited its utility for scientific
discovery. However, recent advances in model interpretability have begun to address
this limitation, making it possible to extract human-understandable insights from trained
models [20, 34, 24] — and our work at Leap Laboratories is state-of-the-art in this
area.



A data-driven paradigm of this kind offers several key advantages [13, 17, 30]. By
examining all available data without predetermined hypotheses, it avoids the cognitive
biases that limit traditional discovery methods. Machine learning enables comprehensive
pattern detection by identifying complex interactions among multiple variables that
would be computationally intractable for traditional analytical approaches. Furthermore,
a system that automates this analysis would provide more consistent and reproducible
results, since the path from data to insight is logged and transparent, while also providing
significant efficiency gains through rapid exploration of even very large, complex
datasets (which currently require months of researcher time to analyse).

S The Discovery Engine

In order for this kind of discovery to be both practical at scale and accessible to
scientists without data science training, we must turn to automation. Training machine
learning models well and interpreting them is a complex task that requires a great
deal of expertise: practitioners in industry and academia dedicate months to manual
data preparation, model training and tuning, and evaluation. Our Discovery Engine
implements an end-to-end pipeline that automates this process in hours, and with
the addition of our specialist interpretability methods, enables autonomous scientific
discovery. Key components are as follows:

5.1 Data Ingestion and Preprocessing

The system automatically handles data cleaning, including scaling, encoding, imputation,
deduplication, and outlier removal. This is particularly important because the majority of
scientists are not skilled data engineers — we have found that preparing data for machine
learning is far outside the expertise of most researchers, and indeed is a non-trivial task
historically forming the majority of data scientists’ workload. For this reason we have
invested significantly in automating preprocessing as far as possible, selecting processes
heuristically based on data characteristics. In practice we find this dramatically increases
the time from data acquisition to discovery, with the Discovery Engine able to process
many datasets with zero manual preparation.

5.2 Automated Machine Learning

A number of automated machine learning (AutoML) approaches exist, aiming to allow
non-experts to achieve performance comparable to that of skilled practitioners [9, 21, 41,
16, 42]. While existing AutoML tools can reduce the need for manual model selection
and hyperparameter tuning, they (i) are typically unsuitable for scientific discovery use
as they rely on transfer learning from more general pre-trained models (which confuse
the patterns we extract with information external to the dataset under investigation),
(ii) are limited in the data structures and modalities they support, (iii) typically do not
optimise models for interpretability or enable the kind of in-depth analysis necessary
for knowledge discovery. The Discovery Engine therefore employs a custom AutoML
system, which dynamically sizes appropriate architectures for the data; trains models



efficiently with hyperparameter search and early stopping; detects and mitigates overfit;
performs a thorough performance evaluation; and ultimately selects the best-performing
model. Overfit detection and mitigation is key here, and distinguishes our pattern finding
from data-dredging — we test all models on holdout datasets to increase our confidence
that the patterns they learn will generalise.

5.3 Automated Interpretability

Our interpretability stack employs novel techniques to extract learned patterns from
the most performant model. The system distinguishes between patterns with strong
empirical support present in the data and those which demonstrate extrapolation from
the data by the model, categorizing findings as either ‘discoveries’ or ‘hypotheses’
respectively, and providing validatory subsets of the data for the former.

This is a key distinction: in contrast to hypothesis-generation methods, our system finds
unknown patterns that already exist in the data (and provides subsets of the data that
validate this) — putting the onus on robust data acquisition, rather than speculation reliant
on an unreliable body of literature.

5.4 Report Generation

We then rank patterns based on their strength (how much they affect the variable of
interest) and carefully apply LLMs to contextualize and assess the potential novelty of
discovered patterns with respect to existing scientific literature. All patterns we report
are statistically significant with respect to the data provided. The output of this system
is then (i) a pdf report outlining and evidencing the patterns found in the dataset, ranked
by strength and novelty, with reference to existing literature — also provided as a latex
document, well suited for sharing in academic contexts or for forming the basis of novel
publications, (ii) a dashboard allowing for interactive exploration of the patterns within
the context of the dataset, (iii) code artefacts allowing for complete reproducibility of
the discovery process, and (iv) the best-performing predictive model.

6 Example

6.1 The Discovery Engine in Plant Biology

Below is an example of the Discovery Engine applied to a specific problem in plant
biology: that of understanding the factors that determine root architecture.

This study, conducted in collaboration with the Montpellier Institute of Plant Sciences
(IPSiM), used the Discovery Engine to identify relationships between genotype, envi-
ronmental variables, and early root architecture in Arabidopsis thaliana. A. thaliana is
commonly used as a model organism in plant biology research due to its rapid growth
cycle, genetic manipulability, and capacity to provide insights applicable to other agri-
cultural species [23]. The investigation focused on the initial 16 days of root system



development, a critical period when root architecture begins to define how efficiently
the plant will access water and nutrients [32].

The targets of interest were as follows:

« alpha: A weight value capturing the ratio by which the plant balances transport
distance and total root growth.

* total root length: The sum of all root lengths per plant.

« scaling distance to front: The shortest distance from the observed plant architec-
ture to the pareto front curve on a growth-transport graph.

* mean LR angles: The average angle of lateral roots relative to the primary root.
predicted by the following variables:

» CO2: Parts per million of CO2 in the room.

* Temp: Room temperature.

* Genotype: Identifies the gene mutation of the plant (or "WT’ for wild-type).

* Nutrients: Indicates the soil nutrients added beyond the baseline required for
basic survival (where "Mock’ represents the control condition).

* Sorbitol: A sugar alcohol controlling osmotic stress, affecting water retention in
the soil.

e Day: The day of the plant’s development at the time of measurement (ranging
between day 3 and day 15 in most cases).

Root architecture is directly correlated with critical agricultural traits such as drought
resistance, nutrient uptake, and ultimately, crop yield. Understanding how roots de-
velop under different genetic and environmental conditions is extremely important
for improving agricultural practices — especially as we face increasingly unstable cli-
mates [6, 22, 37, 32].

After processing, the dataset used in this study contained approximately 700 samples,
over 20 genotypes and 50 different nutrient treatments across different environmental
settings. The challenge scientists would typically face is finding combinations of these
inputs that work together to optimise root structures. This is a non-trivial task, since
existing analysis methods struggle to identify combinatorial, non-linear patterns. Our
collaborators at IPSiM told us that they would typically spend ‘months scrolling in
excel’ to make sense of this data — in contrast to our automated system, which identified
these relationships in less than an hour.

The Discovery Engine extracted 39 patterns describing relationships between the exper-
imental variables and the targets of interest. Of these, 18 appear to be unexplored in
existing literature. A publication describing the most interesting of these is currently
underway, so to avoid duplication we include only a single pattern here.

In Figure 1, we present a visualisation of this pattern as a violin plot. Each violin
represents the distribution of a single variable, shown on the y axis, under different



sets of conditions (or rules) extracted by our system, shown on the x axis. Above each
violin, we show the p-value (p), the mean of the target value (1) in the data subset
(also denoted by a horizontal dotted line), and the number of samples (n) in that subset.
Below the plot, we include a brief LLM-generated statement contextualising the pattern
with respect to existing knowledge.

The full output of the Discovery Engine includes this information for every pattern
found, along with a dashboard allowing for interactive exploration of the patterns within
the context of the dataset.

Violin Plot of alpha under multiple maximising conditions:

(1) Temp = "28.0"

(2) 4.00 [Q9] = DAY = 5.00 [Q19]
(3) Genotype = "hy5/nrt1.1"

0.8 p=2.84e-
u=0.115 u=0.24
n=737 n=68

p=22e-14 p=6.826-25 p=1.53e-06
u=0.181 1=0.285 u=0.454
n=126 n=61 n=8

Overall (1) (3) 1,2,3)

@)
Pattern Conditions

Figure 1: The alpha value tends to be higher for the hy5/nrtl.1 genotype at warm
temperatures and early stages of development.

“This specific pattern relating the hyS/nrtl.1 genotype, temperature, and
development stage to the alpha weight is not established in existing litera-
ture. Related work has shown that the HYS5 and NRT1.1 genes are involved
in regulating root growth and nitrogen uptake respectively, which could
help explain the observed relationship with the alpha value that balances
transport distance and total root growth. However, the specific interaction
of this double mutant with temperature and development stage is a novel
finding that warrants further investigation.” — LLM

On the far left of Figure 1, in the first violin, we see the full distribution of alpha values
over the entire dataset. Condition (1) ‘Temp = 28.0’ significantly increases the mean
alpha, shown in the second violin. The third violin shows the distribution of alpha
under condition (2), where the measurement is taken on day 4 or 5. The distribution of
alpha in samples where condition (3), ‘Genotype = hy5/nrt1.1’, is shown in the fourth
violin — this also significantly increases the mean alpha value compared to the overall
distribution. The fifth violin shows that when these conditions are present together,
the mean alpha value increases far more than when any condition is present alone.
This demonstrates a combinatorial effect, that would be extremely hard to identify via



manual analysis unless the practitioner were actively looking for it. We have found
a novel insight into how environmental variables, plant age and genotype affect root
structure, that would otherwise have been missed.

Plant scientists at IPSiM are now able to test many more variables in a single experiment
than they could previously, massively increasing iteration speed and efficiency — because
with the Discovery Engine, they are able to easily and automatically extract meaningful
patterns from the results — rather than spending months on laborious manual exploration
of the data, or limiting their enquiry to a few pre-conceived hypotheses.

Other collaborations of this nature have yielded more valuable insights. Over the
coming months, working closely with our scientific partners, we plan to publish this
study and a number of other applications of our Discovery Engine — in domains spanning
meteorology, neuroscience, genomics, materials and more.

7 Conclusion

The data-driven discovery paradigm represents a fundamental shift in scientific method-
ology. By removing hypothesis-driven constraints, we accelerate discovery rates and
reduce the impact of cognitive biases — and with automation, we make this capability
accessible to all scientists. However, successful and widespread implementation re-
quires changes in research practices, including increased emphasis on comprehensive
data collection and sharing. The key limitation of data-driven discovery, is of course,
data. The Discovery Engine is entirely reliant on data quality (and to a lesser extent,
quantity) — bad (noisy, missing, biased, error-prone) data makes it extremely difficult
for models (and humans!) to learn anything useful. For this reason, we see the role of
scientists in a post-discovery-engine world as one primarily of skilled data collectors —
and naturally, as directors of enquiry. The Discovery Engine is not opinionated about
which phenomena to investigate. It asks only for data of sufficient quality, and provides
a superhuman lens through which we can make sense of it.
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